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ABSTRACT 

 

The process for accurately estimating product reliability early in the development process can be 

a difficult and costly task.  Traditional methods like Reliability Prediction Models and Life 

Testing Strategies yield beneficial results when relative information is known about the product 

that is to be analyzed.   When there is minimal information (e.g., prior failure rates, etc.), such as 

in new concept design, these above reliability methods have limitations.  For these cases 

computer simulation technology has proven to yield valuable results. 

This paper will demonstrate analysis procedures for assessing the margin and reliability of 

product design in the early product development stage. This analysis process is composed of 

requirements definition, a mathematical model, model validation, parameter diagram, design of 

experiment (DOE), response surface, and optimization.   

The analysis process shows its impacts, in the following areas: reducing the product development 

cycle, reducing cost, increasing confidence, and estimating product reliability. This is 

particularly important early in the concept development process. 

 
Keywords: Computer Simulation, parameter variability, DYNA3D, Design of Experiments, 

Main Effect, Interaction Effect, Screening, Sensitivity Analysis, response surfaces 
 
 
1. Introduction 

 
To survive in today's intensely competitive business environment, most companies try to find 

new ways to increase profitability and to deliver high quality, reliable products.  These goals 

could be achieved by using different strategies, such as shortening the product development 

cycle and minimizing resources, with varying degree of success. Computer simulation 

technology provides a promising and cost effective way to successfully implement these 

strategies. 

Due to the rapid developments in computer simulation technologies, new analytical techniques 

are now available that include variability in the analysis procedure.  In other words, some of the 

noise factors in the traditional parameter diagram can be analytically included in the analyses 

using computer simulation technology.  
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The Virtual Proving Ground (VPG) is an analytical process that enhances the traditional 

computer aided engineering (CAE) analysis process, which only analyzed the nominal designs.  

The enhancement is to incorporate variability into the analysis process.  Its main purpose is to 

provide an estimate of the variability of product performance subjected to the influence of 

different sources of uncertainty. 

Although it can and shall be implemented in every phase of the product development process, the 

Virtual Testing process shall be applied as early as possible to maximize its effects.  In summary, 

VPG is an analytical process, which is developed to serve the following purposes:  

 to improve the ability to explore, generate, and analyze different  system attributes 

and structural design alternatives, 

 to analytically account for the effects of variability in manufacturing and materials, 

 to quantify the design risks, reliability, and sensitivity using probabilistic analysis 

tools and methods, and 

 to optimize, if necessary, the product designs for selected performance parameters 

(such as cost, weight, design targets) over a range of variations of multi-attribute 

design parameters and constraints. 

This paper is organized as follows:  Section 2 briefly describes fundamentals of the analytical 

tools used to assess the margin and reliability.  Section 3 describes an application example of the 

analysis procedure.  This paper is closed with some conclusions in Section 4. 

 

2. Analysis Procedure to Assess Margin and Uncertainty 

 
Figure 1 shows the analysis procedure to assess margins and uncertainty.  It consists of the 

following steps: Analytical Model, Parameter-Diagram (P-Diagram), Screening, Response 

Surface, Model Validation, and Margin and Reliability Assessment.   

 
A complete understanding of the system requirements is necessary to successfully develop the 

analytical model.  The requirements must be sufficiently defined to establish the scope of the 

problem, the goal of the analysis, and to identify necessary physics to be included.  
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2.1 Parameter Diagram  

The first step in the analysis flowchart (Figure 1) is to identify each factor to be included in the 

parameter-diagram (Figure 2).  This can only be done efficiently by reviewing the content of the 

analytical model and the nature of the application.  During the course of the simulation analysis, 

certain assumptions are often made. Therefore, it is very important to review the content and the 

capability of the resultant analytical model in defining the P-diagram. 

Figure 2 shows a typical P-Diagram. The term "control factor" is used to describe factors which 

can be controlled and affect the system response.  Typical examples of control factors are: 

material selection, thickness, and design feature.   The term "input factor" is used to describe the 

measurable, functional assumptions to which the system will respond. The "output factor" is the 

response of the system.  The factors which can not be controlled are categorized as "noise 

factors". Here, we are concerned with 5 noise factors: (1) piece-to-piece interaction/ variation, 

(2) wear/fatigue, (3) product duty cycle, (4) environment (such as climate), and (5) systems 

interaction.  Later in this paper, it will be demonstrated how to promote some of the noise factors 

to control factors through computer simulation techniques. 

 

2.2 Screening  

The central question of the screening experiment in the context of modeling and computer 

simulation is: which factors – among the many potentially important factors – are really 

important? One of the aims in modeling is to come up with a short list of important factors, and 

typically a risk-based graded approach is utilized to establish parameter hierarchy in terms of the 

importance of the system outcome. Screening methods are created to deal with models 

containing hundreds of input factors.  For this reason, these methods must be economical.  There 

exists a trade-off between computational cost and information obtained from these methods.  

Some authors restrict the term ”screening designs” only to designs with fewer runs than factors 

(i.e. supersaturated designs).  On the other hand, some authors speak of screening designs when 

the number of runs is larger than the number of factors.  Myers and Montgomery[5] refer to 

fractional factorials being used as screening designs. In this report, the term screening refers to 

any preliminary activity that aims to identify which factors involved in a simulation model are 

most important.  However, the fractional factorial method is applied for the screening 

experiment. 
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The purpose of screening is to search for k1 factors that make significant effects on the objective 

response amongst the k2 (k1 << k2) potentially important factors.  This screening is needed if (1) 

the simulation study is still in its early, piloting phases, and (2) many factors may conceivably be 

important.  A system with many factors will require many numerical simulations as well as 

computational resources.  As an example, take the case in which there are N design factors.  This 

requires (N+1) analyses to conduct first-order sensitivity analyses using a forward (backward or 

central) finite difference scheme.  Computing the second order sensitivity matrix requires N(N-

1)/2 analyses, in addition to the (N+1) analyses for first order analyses. 

The computation cost of the experiment is defined as the number of simulations (or model 

evaluations) required.  This cost is usually a function of the number of factors involved in the 

analysis and of the complexity of the input/output behavior.  

The simplest class of screening designs is that of the one-at-a-time experiments (OAT).  In these 

designs, the effect of each factor is evaluated in turn.  In this report, we apply one particular 

OAT method, proposed by Cotter[6].  This screening design requires the following (2k+2) runs 

for k factors: 

 one initial run with all factors at their low level; 

 k runs with each factor in turn at its upper level, while all other k-1 factors remain at their 

low levels; 

 k runs with each factor in turn at its low level, while all other factors remain at their upper 

level; 

 one run with all factors at their upper level. 

Denote the responses by 122110 ,,,,,,, ++ kkkk pppppp LL , then the order of importance for factor 

j can be assessed using the following equation: 

( ) ( ) ( ) ( )
44

)( 012012 pppppppp
jM jjkkjjkk −−−

+
−+−

= ++++  . 

One can then ‘rank’ the importance of each factor by comparing the value of M(j) between all 

the factors involved in the model.  One major shortcoming of this method is that an importance 

factor may remain undetected.  Another drawback is that it cannot provide information about 

interaction effects. 

An alternate approach to the screening experiment is to use a factorial design scheme, in 

particular the fractional factorial design[5].  A 2k fractional factorial design containing pk −2  runs 
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is called a p2
1 fraction of the k2 design, or simply, a pk −2  fractional factorial design.  A 

pk −2 fractional factorial design is of resolution IV if the main effects are clear of any two-factor 

interactions, but alias with three-factor interactions.  If three-factors and higher interactions are 

suppressed, then the major effects may be estimated directly in a pk
IV
−2 design.   For the screening 

experiment, one should start with a resolution IV design, if possible, since it differentiates the 

main effect from the three factors interaction effect. 

 
2. 4 Response Surface 

Consider a first-order polynomial, which is a model with only N main effects, besides the overall 

mean.  By definition, a resolution III or R-3 design permits the unbiased estimation of such a 

first-order polynomial, which takes the form: 

 

  
),3,2,1(
1 1

,
1

,0

ni

ExxbxaaS i

Nk

k

Nj

j
jkjkj

Nj

j
jiji

L=

+++= ∑∑∑
=

=

=

=

=

=      (1) 

where 

iS : simulation response of factor combination i,  

0a : overall mean response, 

ija , :main effect of factor j, 

ikjb , : interaction effect of the factors j and k,  

iE : fitting error of the regression model for factor combination i,  

n: number of simulation factor combinations. 

It seems prudent to assume that interactions between pairs of factors (two-factor interactions) are 

important.  By definition, a resolution IV or R-4 design permits the unbiased estimation of all N 

main effects, even if two-factor interactions are presented.  However, R-4 designs do not give 

unbiased estimations of all N(N-1)/2 individual two-factors interactions.  As compared with R-3 

designs, R-4 designs require that the number of simulated two-factor combinations be doubled.  

For example, N=7 requires 8 and 16 simulations, respectively, for R-3 and R-4 designs. For the 

application example, which will be described in the next section, the "fold-over" principle was 
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applied to construct the matrix for DOE analyses. In other words, the DOE matrix is established 

by creating the mirror image of the R-3 DOE matrix.   

The central composite DOE (CCD) matrix, which considers a refined resolution of each factor is 

used, in conjunction with the preliminary DOE, to collect the data for our response surface 

model.  The typical CCD consists of the following design points: (1) the axial point, which is the 

design point and (2) the center run.  The axial points contribute in a large way to the estimation 

of quadratic terms.  Without the axial points, only the sum of the quadratic terms, ∑
= ki

iib
K,1

, can be 

estimated.  The axial points do not contribute to the estimation of the interaction terms.  In 

general, the value of the axial distance varies from 1 to k  where k is the number of design 

factors used in the CCD. 

The center run provides an internal estimate of error (pure error) and contributes toward the 

estimation of quadratic terms.  In the conventional DOE analyses, there are more than one center 

run to compensate for the inherent variation of the experiments. In the computer-simulation 

environment, there is no variation as long as the initial parameters/conditions do not change.  

Therefore, it is sufficient to use only one center run due to the nature of the computer simulation 

environment.   

One can construct the response surface based on the results obtained from two sets of DOE 

(screening and central composite).   The response surface model, equation (1), is called a 

multiple linear regression model with N regressor (or independent) variables. The method of 

least squares is typically used to estimate the regression coefficients.   

 

2.5 Assessment of Margin and Reliability 

After the response surface has been obtained, the margin and reliability of the design can be 

assessed through a variety of methods. The reliability, defined as the probability of the structure 

in safe state, is evaluated as follows: 

 ( ) ( )∫∫ −==
F

X
S

X dxxpdxxpR 1       (2) 

where ( )⋅Xp is the joint probability density function of a random vector ( )nxxxX ,,, 21 L= , S  is 

the safe region, F  denotes the failure domain, and the surface separating S  and F  is called the 

limit state function, ( )XG .  One can carry out the integration in equation (2) analytically.  
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However, this analytical approach can only be done for a very limited numbers of cases.  For 

practical applications, which often involve random vectors with high dimensions, the analytical 

approach does not appear feasible.  Numerical methods, such as Monte Carlo simulations, can 

generally be performed to evaluate the integration.  The main drawback of such brute force 

evaluation is time-consuming.  This is particular true when the computer simulation model is of 

large degree-of-freedom. 

In this article, two methods are applied to assess the margin and reliability of the product. The 

first method is the first-order reliability method (FORM). The term "first-order" is used to 

describe that only the first-order expansion of the limit state function will be used for analysis.  

The term "second-moment" is used to refer that only the mean and variation of the design factors 

are required during the course of analysis. In the following, FORM will be briefly reviewed[2,10]. 

The basic idea in FORM is to approximate the failure surface by a single (or a set of) first order 

surface(s) and then calculate the failure probability using the approximate surface(s). In most of 

the applications of FORM, the problem is transformed into independent normal random variable 

space (also known as normalized space). 

The center portion, which is the most challenging part, of reliability assessment is to find the 

location of the most probable point (MPP, or the checking point).  The reliability index can be 

obtained after the location of the MPP has been identified. The first step in assessing the 

reliability is to transform the limit state function to normalized space.  In other words, the design 

factors are transformed from the original random variables, ( )nxxxX ,,, 21 L= , to Gaussian 

variables, ( )nzzzZ ,,, 21 L= , with zero mean and unity variance.  At the same time, the limit 

state function ( )XG  will become ( )Zg , where ( )TnzzzZ ,,, 21 L= is a random vector. The MPP 

is the point in the normalized space that has the highest probability density function value on the 

limit state function ( ) 0=Zg  curve.  The principle of variation will be applied to illustrate the 

concept.  The search for the MPP is equivalent to minimizing the distance between the original 

and limit state function, which is expressed in terms of standard Gaussian random variables.  

With the introduction of Lagrange multiplier λ , the problem can be expressed as: 

  )()()min( 2/1 ZgZZL T λ+⋅=   .      (3) 

For a stationary point, it is required that 0=
∂
∂

jz
L , for all j , which leads to 
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  0)( 2/1 =
∂
∂

+⋅=
∂
∂ −

j

T
j

j z
gZZz

z
L λ ,      (4) 

and 0/ =∂∂ λL  leads to 0)( =Zg which is the limit state function itself.  Now, the key is to solve 

for the location of the MPP using equation (4).  From equation (4), one can solve for the co-

ordinates for the stationary point, sZ , as 

  ( )sss ZgZ ∇∆−= λ         (5) 

in which the column vector 

  ( )
T

nz
g

z
g

z
gg 








∂
∂

∂
∂

∂
∂

=⋅∇ ,,,
21

L        (6)  

stands for the gradient of the limit state function, and  

  2/1)( ZZ T ⋅=∆         (7) 

denotes the distance between the point on the limit state function and the origin in the normalized 

space.  One can solve for λ  from equations (4) and (5).  It turns out that  

  
ggT ∇⋅∇

±=
1λ ,        (8) 

where the sign is chosen so that equation (9) is always positive, and the resultant minimum 
distance s∆ can be expressed as 

  0
)(

)(
2/1 ≥

∇⋅∇
∇⋅−

±=∆
gg

gZ
T

T
s

s .       (9) 

The coordinates of the stationary point, which is the MPP, are 

  g
gg

Z
T
s

s ∇
∇∇

∆
±=   .       (10) 

Again, the sign of equation (10) has to be consistent with equation (8).  Equations (9) and (10) 

are the base for FORM.  After the MPP has been located, the reliability index (RI) is given by 

 RI = ( )[ ]
( )[ ]

( )[ ]
( )[ ]

( )s
s

s Z
ZgVar

ZgE
XGVar

XGE
Φ==  .    (11) 

For a general limit state function which could be highly nonlinear, the search for the MPP is not 

an easy task.  Here, a solution process based on an iterative solution scheme is introduced.  Let 

( )Zg  be the general, nonlinear limit state function in normalized space.  Let us consider the 

Taylor expansion of ( )Zg  around 0ZZ =  which gives 

  ( ) )()()()( 2
0000 ZZOZZZgZgZg T −+−∇+=      (12) 
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Now, let us assume the search for the MPP will be convergent and ends when the error 

)( 2
0ZZO −  reaches a pre-defined criterion.  Under this circumstance, equation (12) can be 

expressed as 

  ( ) 0)()()( 101 =−∇+= ++ mm
T

mm ZZZgZgZg      (13) 

where 1+mZ and mZ stand for, respectively, the (m+1)-th and m-th approximation of the MPP.  

Equation (12) can be turned into a recurrence relationship: 

  ( )
( ) ( )( ) 2/11

,

)(

m
T

m

mm
mm

ZgZg

ZgZg
ZZ

∇∇

∇
−=+ .      (14) 

Equation (14) can be used to obtain the location of the MPP.  In practice, the iteration proceeds 

through the following steps: 

1. Transfer the original design factors X to the independent standardized normal variables Z 

2. Transfer the original limit state function G(X)  to g(Z)  

3. Select initial checking point 1Z  

4. Compute the distance 1∆
 using equation (9) 

5. Compute the normalized gradient function, ( )
( ) ( )( )m

T
m

m

ZgZg

Zg

∇∇

∇  assuming m = 1 

6. Compute 1+mZ  using equation (13)  

7. Check whether mZ and 1+mZ  have converged.  If not, go back to step 5 and increase the 

index m by 1. 

 
The second method, applied to analyze the reliability index, is Monte Carlo simulation.  In the 

application example, the Monte Carlo simulation technique is applied to the resultant response 

surface directly.  In other words, one assumes that the system response can be approximated, 

with reasonable accuracy, by an explicit function.  One can then apply a Monte Carlo sampling 

scheme to study the response surface. The results from this Monte Carlo simulation include: 

mean, standard deviation, and distribution information of the system response.   

 
 
3. Application Example 

An encapsulated foam model is chosen as an example to illustrate the implementation of the 

analysis procedures described in Section 2.  A layer of cellular foam with assumed material 
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properties (stress versus strain curve, Figure 3) is put between two moldings.  A preload is 

applied to the top molding.  Along the material property curve, there is a region referred to as the 

lockup region. This lockup phenomenon is due to the nature of the cellular foam material being a 

porous material. As the foam is compressed, the pores begin to collapse until no pores remain. At 

this point, the compression response is governed by the bulk modulus of the dense material. On 

the plot of Figure 3 the lockup position is where the relatively flat curve abruptly transitions to 

the steep curve. Permanent deformation occurs when operation is within the lockup region.  It is 

due to this, when the system reaches equilibrium, the maximal pressure is chosen to serve as the 

design criterion.  The following assumptions are employed in assessing the margin and 

reliability: 

 all design factors are assumed to be of Gaussian distribution,   

 there exists some correlation between material properties in different regions, and  

 the same correlation relation exists between foam thicknesses in different regions. 

 

3.1 Model Description 

The simulation model is chosen to be a very generic, versatile, hemispherical geometry. The 

model is depicted in Figure 4, and consists of the following components: rigid top molding, 

deformable top molding, rigid bottom molding, deformable bottom molding, and a layer of 

crushable (cellular) foam.  To speed the computation, the top and bottom moldings are modeled 

as rigid bodies.  Due to the big difference in material properties, particularly the Young’s 

Modulus between the moldings and the cellular foam, the top and bottom rigid moldings are 

coated with one layer of deformable brick elements.  Two sliding interfaces are placed to 

separate the cellular foam from the deformable top and bottom moldings.  The bottom right 

molding is constrained in all 6 degree-of-freedoms whereas the top rigid molding is constrained 

along all of the rotational degree-of-freedom.  The cellular foam layer is preloaded by applying a 

prescribed pressure to the top molding.  To prevent being squeezed out from the molding, the top 

surface of the crushable foam is constrained along the translational y-direction. 

The following factors are considered as primary candidates for sources of uncertainty: thickness 

of the foam, material properties of foam, preload of the system, sliding coefficient of friction of 

the interfaces (between foam and moldings), and the geometrical offset (mis-alignment) between 

the moldings. In real application, the material inhomogeneity, including properties and thickness, 
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is a function of location. In reality, the thickness as well as material properties, of every brick 

element are  sources of uncertainty.  However, it is impractical and virtually impossible to 

include such uncertainties because of the enormous computational costs.  Because of these 

concerns, the thickness (and material properties) of the foam are divided into 4 groups, as 

depicted in Figure 5.  Three factors, x-offset, y-offset, and tilt-angle, are used to describe the 

geometrical uncertainties associated with the loading path of the top rigid molding.  The 

coefficient of friction on the sliding interfaces are included as one source of uncertainty.  Finally, 

the magnitude of the static preload is considered as one source of uncertainty.  There are 13 

design factors involved in the analysis: 4 for material properties, 4 for foam thickness, 3 for 

geometrical misalignment, 1 for coefficient of friction, and 1 for preload.  These factors are 

summarized in Table 1. 

 

3.2 Screening Experiment and Results 

Because there are 13 design factors being included in the analysis procedure, a full two-level 

factorial design will require 213 (=8192) runs.  Instead of a full factorial design, only a fraction of 

these designs, which is equivalent to resolution IV design, are used in the screening experiments.  

Table 4 shows part (the first 48 cases) of the DOE matrix being used for the screening 

experiment.  128 simulation models were created based on the matrix and submitted for analyses.  

The resultant maximal pressure (hot spots) were collected and processed. 

Figure 6 shows typical simulation results. Figures 7 and 8 show, respectively, the main effect and 

interaction effect plots from the screening experiment.  After carefully studying these plots, the 

following conclusion can be drawn: (1) preload is the predominant factor, (2) foam thickness and 

properties are important factors, and (3) the coefficient of friction and geometrical misalignment 

do not have significant influence on the maximum response pressure.  These observations were 

confirmed by the results from Cotter’s screening design (Figure 9).  Therefore, through the 

screening experiment, we identified 9 parameters which show significant influence over the 

system response.  These are the parameters that were discussed in the previous section. We 

applied a central composite design scheme which consists of 19 designs: two designs for each 

parameter and one final design for the center point.  The results from screening experiments and 

central composite design were collected and analyzed to obtain the response surface, an explicit 



11/10/2004        UCRL-CONF-205448 

Page 12 of 26 

function representing the functional relation between response and parameter.  The resultant 

response surface of the system, expressed in terms of coded variables, appears as 

  ( ) CXXXbaXR TT ++= 0  

where 88.70 =a  is the constant term, b  is the linear coefficient vector, C  is the quadratic 

coefficient matrix.  The values of b  and C  are provided in the appendix.  We then move on to 

the next step, assessment of margin and reliability.  

 

3.3  Assessment of Margin and Reliability 

After the response surface of the system has been developed, we can assess the reliability of the 

system with a given design criterion.  Let us assume the design criterion is that the maximal 

pressure is 9 MPa or less.  Moreover, let us assume the following correlation matrix for both 

material properties and foam thickness: 

  ( )


















=

13.003.03.0
3.013.003.0
03.03.013.0
3.003.03.01

, σTXXCov  . 

The limit state function, expressed in terms of coded variables, is convenient in developing the 

response surface and can be expressed as: 

  ( ) ( ) CXXXbaXG TT −−−= 09  . 

To assess the reliability using equation (11), we only need to calculate ( )[ ]XGE  and ( )[ ]XGVar .  

Using the values given in the Appendix, we calculate that ( )[ ] 12.1=XGE  and 

( )[ ] 5838.1=XGVar .  Therefore, the reliability index is RI=0.71 which corresponds to 76.7% of 

reliability. 

The application of FORM to assess the MPP starts from expressing the limit state function in the 

normalized space.  We assess the MPP using the iterative scheme as described in Section 2.4. 

Table 5 shows the iterative result in searching for the MPP. 

The commercial software (Crystall Ball4)[9]  is applied to study the response of the system under 

the influence of random variables.  Crystall Ball is a spreadsheet add-on that performs 

uncertainty analysis and creates graphic output for sensitivity analysis.  It conducts Monte Carlo 

                                                 
4 Crystal Ball is a registered trademark of Decisioneering, Inc. 
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simulation and risk analysis.  Either simple Monte Carlo or Latin hypercube sampling schemes 

are available and can be used to simulate the outcome of a model.  Figure 10 shows the 

simulation result using the Crystal Ball software.  Figures 11 and 12 show, respectively, the 

contribution from linear and quadratic terms of the resultant response surface.  Assuming the 

design criterion of maximal pressure (9 MPa or less) we can easily find that the corresponding 

reliability index and reliability are 0.71 and 76.70%, respectively. 

 
 
4. Conclusion 

An analysis process, consisting of concepts and methods from the following areas: (1)  

mathematical models, (2) model validation, (3) parameter diagram, (4) design of experiment, (5) 

response surface, and (6) optimization, has been presented in this article.   

This analysis process shows how to incorporate noise factors into the analysis process.  One 

example was used to demonstration its implementation to study the effect of piece-to-piece 

variation.  Through a screening experiment, the process shows its capability to identify the 

significant design factors.  It can also use to assess the reliability of the design.  Optimization, 

which is not demonstrated explicitly in this example, can also be applied to improve the design.  

The analysis process shows how it potentially impacts the following areas: reducing the product 

development cycle, reducing cost, and estimating product reliability (in particular, early in the 

product concept development process).    

The analysis process can be extended easily to consider other application examples with different 

design criteria.   Due to lack of experimental data, model validation - a very critical step - was 

not exercised.  Model validation would enable us to quantify confidence bounds on the 

simulations[10] to complement the reliability methods described here[10].  A more rigorous 

procedure would start with a validated analytical model.  The response surface should be 

developed within the application region.  Another direction for future development would be to 

include other types of noise factors in the analysis. In the illustration example, we only 

considered the piece-to-piece variation effects.  For future development, one could extend the 

analysis process to include other noise factors such environmental factors (temperature humidity) 

and component wear. 
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Figure 3: Material Property (Volumetric Strain versus Pressure Curve) for Cellular Foam 

 

 
Figure 4: Layout of Simulation Model for generic hemispherical experiment. 
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Figure 5: Layout of Cellular Foam  

 

 
Figure 6: Typical response pressure distribution, t=2. 
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Figure 7: Main Effects Plots using Screen Experiment 
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Figure 8: Interaction Plots using Screening Experiment  
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Figure 9: Order of Importance from Cotter’s Design  
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Figure 10: System Response from Monte Carlo Simulation  
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Figure 11: Contribution from Linear Term of Response Surface 
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Figure 12: Contribution from Quadratic Terms of Response Surface 



11/10/2004        UCRL-CONF-205448 

Page 22 of 26 

  
Table 1: List of Design Parameters 

 
Design Parameter Description 

x-offset, z-offset Geometrical mis-alignment (center line to center line) 
between the top and the bottom moldings 

tilt-angle Horizontal tilt angle of the top molding along z-direction 

mat1, mat2, mat3, mat4 Material properties of cellular foam in different regions 

preload Magnitude of static preload being applied to system 

mu Static coefficient of friction used in the sliding interfaces 

th1, th2, th3, th4 Thickness of cellular foam in different regions 
 

Table 2: Relation between Coded and Natural Variables 
 

Natural Variable Terms Code  
Variable Symbol Mean Range Standard 

Deviation 
Transformation 

x-offest 1x  1y  0 0.635 0.106 3125.0/11 yx =  
z-offest 2x  2y  0 0.635 0.106 3125.0/22 yx =  

tilt-
angle 

3x  3y  0 1.0 0.167 33 2yx =  

mat1 4x  4y  1.838 0.3676 0.0613 ( ) 1838.0/838.144 −= yx  
mat2 5x  5y  1.838 0.3676 0.0613 ( ) 1838.0/838.155 −= yx  
mat3 6x  6y  1.838 0.3676 0.0613 ( ) 1838.0/838.166 −= yx  
mat4 7x  7y  1.838 0.3676 0.0613 ( ) 1838.0/838.177 −= yx  

 preload 8x  8y  1.75 0.50 0.083 ( ) 25.0/75.188 −= yx  
 mu 9x  9y  0.40 0.08 0.013 ( ) 04.0/40.099 −= yx  
 th1 10x  10y  6.35 0.635 0.106 ( ) 3125.0/35.61010 −= yx  
th2 11x  11y  6.35 0.635 0.106 ( ) 3125.0/35.61111 −= yx  
th3 12x  12y  6.35 0.635 0.106 ( ) 3125.0/35.61212 −= yx  
th4 13x  13y  6.35 0.635 0.106 ( ) 3125.0/35.61313 −= yx  
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Table 3: Cotter’s One-At-A-Time Design 
 
x-offset z-offset tilt-angle mat1 mat2 mat3 mat4 preload mu th1 th2 th3 th4 response

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 p0

+1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 p1

-1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 p2

-1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 p3

-1 -1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 p4

-1 -1 -1 -1 +1 -1 -1 -1 -1 -1 -1 -1 -1 p5

-1 -1 -1 -1 -1 +1 -1 -1 -1 -1 -1 -1 -1 p6

-1 -1 -1 -1 -1 -1 +1 -1 -1 -1 -1 -1 -1 p7

-1 -1 -1 -1 -1 -1 -1 +1 -1 -1 -1 -1 -1 p8

-1 -1 -1 -1 -1 -1 -1 -1 +1 -1 -1 -1 -1 p9

-1 -1 -1 -1 -1 -1 -1 -1 -1 +1 -1 -1 -1 p10

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 +1 -1 -1 p11

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 +1 -1 p12

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 +1 p13

-1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 p14

+1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 p15

+1 +1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 p16

+1 +1 +1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 p17

+1 +1 +1 +1 -1 +1 +1 +1 +1 +1 +1 +1 +1 p18

+1 +1 +1 +1 +1 -1 +1 +1 +1 +1 +1 +1 +1 p19

+1 +1 +1 +1 +1 +1 -1 +1 +1 +1 +1 +1 +1 p20

+1 +1 +1 +1 +1 +1 +1 -1 +1 +1 +1 +1 +1 p21

+1 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1 +1 +1 p22

+1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1 +1 p23

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1 p24

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 +1 p25

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 p26

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 p27
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Table 4: Factorial Design of Experiments Matrix used in Screening Experiments 
 

case # x-offset y-offset tilt-angle mat1 mat2 mat3 mat4 preload mu th1 th2 th3 th4
1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
2 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1
3 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1
4 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1
5 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1
6 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
7 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1
8 1 1 1 -1 -1 -1 1 -1 1 1 1 1 1
9 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1

10 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1
11 -1 1 -1 1 -1 -1 1 1 1 1 -1 1 -1
12 1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1
13 -1 -1 1 1 -1 -1 1 1 1 1 1 -1 -1
14 1 -1 1 1 -1 -1 -1 1 1 1 -1 1 -1
15 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1
16 1 1 1 1 -1 -1 1 1 -1 -1 1 1 1
17 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1
18 1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1
19 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1 1
20 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 1
21 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 1
22 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1
23 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1
24 1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1
25 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1
26 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 -1
27 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1
28 1 1 -1 1 1 -1 -1 -1 1 -1 -1 1 1
29 -1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1
30 1 -1 1 1 1 -1 -1 -1 1 -1 1 -1 1
31 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1
32 1 1 1 1 1 -1 1 -1 -1 1 -1 -1 -1
33 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 -1 -1
34 1 -1 -1 -1 -1 1 1 1 -1 1 1 1 -1
35 -1 1 -1 -1 -1 1 1 1 1 -1 1 -1 1
36 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1
37 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 1
38 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1
39 -1 1 1 -1 -1 1 -1 1 -1 1 1 1 -1
40 1 1 1 -1 -1 1 1 1 -1 1 -1 -1 -1
41 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 -1 -1
42 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 -1
43 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1
44 1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 1
45 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 1
46 1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 1
47 -1 1 1 1 -1 1 -1 -1 1 -1 1 1 -1
48 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1
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Table 5: Iterative Result in Searching MPP 
 

Parameter 0-th step 1-st step 2-nd step 3-rd step
x-offset 0.000 0.0037 0.0037 0.0037
z-offset 0.000 0.0213 0.0212 0.0212

tilt-angle 0.000 0.0134 0.0134 0.0134
mat1 0.000 -0.1257 -0.1252 -0.1252
mat2 0.000 -0.1815 -0.1807 -0.1807
mat3 0.000 -0.1495 -0.1489 -0.1489
mat4 0.000 -0.1557 -0.1551 -0.1551

preload 0.000 2.0449 2.0366 2.0366
mu 0.000 0.0081 0.008 0.008
th1 0.000 -0.1915 -0.1908 -0.1908
th2 0.000 -0.1692 -0.1685 -0.1685
th3 0.000 -0.1768 -0.1761 -0.1761
th4 0.000 -0.0886 -0.0882 -0.0882

residual error -0.0046 -7.82E-08 1.26E-16 -9.89E-17
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Appendix: Value of coefficient vector b and matrixC : 
 

0.198) 0.396,- 0.379,- 0.429,- ,0.018,-0.349,4.58 0.335,- 0.406,- 0.282,- - 0.030,  0.048, ,(0.008  b +=  
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